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Abstract: Marek’s disease virus (MDV) is a highly cell-associated oncogenic alphaherpesvirus that
causes lymphomas in various organs in chickens. Like other herpesviruses, MDV has a large and
complex double-stranded DNA genome. A number of viral transcripts are generated by alternative
splicing, a process that drastically extends the coding capacity of the MDV genome. One of the
spliced genes encoded by MDV is the viral interleukin 8 (vIL-8), a CXC chemokine that facilitates
the recruitment of MDV target cells and thereby plays an important role in MDV pathogenesis
and tumorigenesis. We recently identified a novel vIL-8 exon (vIL-8-E3′) by RNA-seq; however, it
remained elusive whether the protein containing the vIL-8-E3′ is expressed and what role it may play
in MDV replication and/or pathogenesis. To address these questions, we first generated recombinant
MDV harboring a tag that allows identification of the spliced vIL-8-E3′ protein, revealing that it is
indeed expressed. We subsequently generated knockout viruses and could demonstrate that the
vIL-8-E3′ protein is dispensable for MDV replication as well as secretion of the functional vIL-8
chemokine. Finally, infection of chickens with this vIL-8-E3′ knockout virus revealed that the protein
is not important for MDV replication and pathogenesis in vivo. Taken together, our study provides
novel insights into the splice forms of the CXC chemokine of this highly oncogenic alphaherpesvirus.

Keywords: Marek’s disease virus; viral chemokine; vIL-8; CXCL13; alternative RNA splicing; splice
acceptor site; pathogenesis; tumorigenesis; chickens

1. Introduction

Marek’s disease virus (MDV) is a highly contagious and strictly cell-associated al-
phaherpesvirus that causes a deadly lymphoproliferative disease in chickens [1]. The
virus causes substantial economic losses in poultry production worldwide and causes
mortality rates of up to 100% in unvaccinated chickens [2–5]. Therefore, billions of chickens
are vaccinated every year. Aside from the deadly lymphomas, the virus also induces
immunosuppression and severe neurological symptoms. MDV has a double-stranded
DNA genome of approximately 180 kilo base pairs, consisting of a long and a short unique
sequence region (UL and US), which are flanked by terminal repeats (TRL and TRS) and
internal repeats (IRL and IRS, Figure 1A) [2]. The MDV genome encodes more than 100
open reading frames (ORFs), which are involved in various processes including replication,
immune evasion, pathogenesis, and virus-induced tumor formation [6].
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Figure 1. Identification and validation of the novel MDV vIL-8 splice variant containing E3′. (A) Schematic representation
of the MDV genome (RB1B strain with deleted internal repeats, RB1B-∆IRLS-HR) harboring the mini-F cassette with the
pTK-eGFP cassette (green square), with a focus on the vIL-8 gene. The predicted splice acceptor site, potential exon, and stop
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codon are labeled with A19′, E3′, and stop, respectively. We inserted a FLAG tag (red square) at 89 bp downstream of the
5′ end of vIL-8 intron II (vE3′-FLAG). A point mutation (G to A) at the splice acceptor site was introduced to abrogate
expression of the E3′splice variant (v∆E3′-FLAG and v∆E3′). (B) Western blot of the novel vIL-8 splice variant. CECs
were infected with 10000 pfu and lysates harvested in RIPA I buffer. Lysates were subjected to SDS-PAGE and then
immunoblotted with the mouse monoclonal α-FLAG tag antibody and a secondary anti-mouse IgM HRP-conjugated
antibody. Cells infected with the parental virus RB1B-∆IRLS-HR were used as a negative control. (C) Detection of the novel
vIL-8 splice variant by IFA. CECs were infected with 100 pfu of the indicated viruses, fixed at 5 dpi, and stained with a
mouse monoclonal α-FLAG tag antibody (Alexa 568). Virus-infected cells express eGFP (green), and nuclei were visualized
using DAPI (blue). The scale bars correspond to 100 µm.

MDV encodes a CXC chemokine that was initially named viral interleukin 8 (vIL-8)
but is most closely related to chicken CXCL13 L1 [7]. vIL-8 is encoded in the TRL and IRL
of the MDV genome (MDV003/MDV078) and expressed with true late kinetics [7,8]. vIL-8
is secreted from MDV-infected cells and recruits B cells and CD4+ CD25+ T cells, which
are target cells for virus replication and MDV-induced transformation, respectively [9,10].
The vIL-8 gene consists of two introns and three exons, which are spliced to produce
a ~0.7 kilo base transcript. Exon I serves as a short signal peptide [11], while exons II
and III are spliced to generate the secreted chemokine. Intriguingly, exons II and III
are also spliced to upstream genes such as the major MDV oncogene meq, RLORF4, and
RLORF5a [12]. Deletion of the vIL-8 gene from the MDV genome (almost) completely
abrogated disease and tumor formation [8,11]. In contrast, abrogation of vIL-8 chemokine
expression by mutating its start codon or deleting its exon I only reduced disease and
tumor incidence by about 60% [9,12], suggesting that alternative splice forms likely play a
role in MDV pathogenesis.

Comprehensive transcriptome analyses of MDV-infected B cells and chicken embryo
cells (CECs) recently revealed a novel alternative vIL-8 splice junction within intron II [6,13].
This splice event would result in a novel exon 3 (E3′) containing the last 16 base pairs
(bp) of intron II and a stop codon. While the splice variant was clearly detectable in the
transcriptome of B cells and CECs, it remained unknown whether this spliced transcript
encodes a protein.

In this study, we set out to investigate whether this novel vIL-8 splice variant is
expressed on the protein level and assessed its role in MDV replication and pathogenesis.
We generated recombinant viruses that either have a FLAG-tagged E3′ or lack its expression
by mutating the splice acceptor site. We could demonstrate that the novel splice form is
expressed as a protein. This protein is dispensable for virus replication, and its absence does
not affect expression of the secreted vIL-8 chemokine. Only minor effects were observed in
MDV pathogenesis and tumor formation. Our study represents the first characterization of
this novel vIL-8 splice form encoded by this highly oncogenic avian herpesvirus.

2. Materials and Methods
2.1. Ethics Statement

All animal work was conducted according to relevant international and national
guidelines for the care and the humane use of animals and was approved by the LAGeSo
(Landesamt für Gesundheit und Soziales) Berlin, Germany (approval number G0294-17,
approval date 16.1.2018).

2.2. Cells

CECs were isolated from embryonated VALO specific pathogen-free eggs (VALO
BioMedia GmbH; Osterholz-Scharmbeck, Germany) as described previously [14]. CECs
were cultured in Eagle’s minimum essential medium (PAN Biotech; Aidenbach, Germany),
supplemented with 1% to 10% fetal bovine serum (PAN Biotech) and antibiotics (100 U/mL
penicillin and 100 µg/mL streptomycin; AppliChem; Darmstadt, Germany) at 37 ◦C and
5% CO2.
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2.3. Viruses

All recombinant viruses were generated based on a previously generated bacterial
artificial chromosome (BAC) clone of the very virulent RB1B strain in which most of the
internal repeat regions were deleted (RB1B-∆IRLS-HR, GenBank number MT955328) [15].
This deletion is rapidly restored upon reconstitution and facilitates a rapid manipulation
of the repeat regions using two-step Red-mediated mutagenesis [15–17]. In addition, a
pTK-eGFP cassette in the mini-F allowed the detection of infected cells in vitro, while the
mini-F was removed for in vivo studies [18]. All primers used for the mutagenesis are
listed in Table 1. The following viruses were generated in our study: vE3′-FLAG contains a
FLAG tag with a glycine-serine (GS) linker at 89 bp of the vIL-8 intron II, which is thereby
only encoded in the novel vIL-8-E3′ and not the previously known vIL-8 exons; v∆E3′ and
v∆E3′-FLAG contain a point mutation (G to A) in the novel splice acceptor site at 82 bp
of intron II to abrogate splicing and expression of this putative novel protein (Figure 1A).
All recombinant viruses were confirmed by restriction fragment length polymorphism
(RFLP), PCR, Sanger sequencing, and Illumina MiSeq sequencing with more than 1000-fold
coverage to ensure that the entire viral genome is correct [19]. In addition, we used
a previously generated mutant virus that lacks the expression of the vIL-8 chemokine
(v∆MetvIL-8) due to the mutation of its start codon [9].

Table 1. Oligonucleotide sequences used in this study.

Construct Primer or Probe Sequence (5′–3′)

E3′-FLAG
For GTAGTGTCTGGCTGTAAAGCTAATTTGGTTAAGGTTTTCCGGCAGC

GATTACAAGGATGACGACGATAAGTAGGGATAACAGGGTAATCGATTT

Rev ACATACCTTCCTGTTCTTCTTGAGAGCAAAGCTACAAAAGCTTAT
CGTCGTCATCCTTGTAATCGCTGCCGCCAGTGTTACAACCAATTAACC

v∆E3′-FLAG
For CTTCCTGTTCTTCTTGAGAGCAAAGCTACAAAAGGGAAAACTTTA

ACCAAATTAGCTTTACAGCCAGTAGGGATAACAGGGTAATCGATTT

Rev CTTAGGTGTAGTGTCTGGCTGTAAAGCTAATTTGGTTAAAGTTTTCC
GCCAGTGTTACAACCAATTAACC

v∆E3′
For GCTACAAAAGCTTATCGTCGTCATCCTTGTAATCGGAAAACTTTA

ACCAAATTAGCTTTACAGCCAGTAGGGATAACAGGGTAATCGATTT

Rev CTTAGGTGTAGTGTCTGGCTGTAAAGCTAATTTGGTTAAAG
TTTTCCGCCAGTGTTACAACCAATTAACC

vIL-8 sequencing
For CCGTATCCCTGCTCCATCCAATAGC

Rev GGTCTCCAATATCACGTGTTGGTGG

ICP4

For CGTGTTTTCCGGCATGTG

Rev TCCCATACCAATCCTCATCCA

Probe FAM-CCCCCACCAGGTGCAGGCA-TAM

iNOS

For GAGTGGTTTAAGGAGTTGGATCTGA

Rev TTCCAGACCTCCCACCTCAA

Probe FAM-CTCTGCCTGCTGTTGCCAACATGC-TAM

For, forward primer; Rev, reverse primer; FAM, 6-carboxyfluorescein; TAM, TAMRA. Underlined primer sequences anneal to the pEPkan-S
plasmid used as a template to amplify the mutagenesis cassette. Italic sequences indicate the FLAG tag with a GS linker. Bold sequences
are MDV-specific sequences used for homologous recombination.

2.4. Western Blotting

To investigate the expression of the novel vIL-8 splice variant and vIL-8 secretion,
Western blot analyses were performed as described previously [20]. Briefly, CECs were in-
fected with 10,000 plaque-forming units (pfu) of the indicated viruses. Cells or supernatants
were harvested at 5 days post infection (dpi). Samples were separated by SDS-PAGE and
then transferred to a polyvinylidene difluoride membrane (Carl Roth; Karlsruhe, Germany)
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using the Biometra semi-dry blotting system (Biometra; Göttingen, Germany). Subse-
quently, the membranes were blocked with 5% milk in phosphate-buffered saline (PBS)
and incubated overnight at 4 ◦C with a mouse monoclonal α-FLAG tag antibody (1:1000;
ABM; Richmond, Canada), the rabbit polyclonal anti-vIL-8 antibody [8], or the mouse
monoclonal anti-gC antibody [9,21], respectively. After three washes with PBST (PBS con-
taining 0.05% Tween 20), the membranes were incubated for one hour at room temperature
with horseradish peroxidase (HRP)-conjugated goat anti-mouse or anti-rabbit antibodies
(1:10,000; Cell Signaling; Danvers, MA, USA). Finally, membranes were visualized using
enhanced chemiluminescence (ECL) plus substrate (Thermo Fisher Scientific; Waltham,
MA, USA), and protein signals were visualized with the Chemi-Smart 5100 detection
system (Peqlab; Erlangen, Germany).

2.5. Indirect Immunofluorescence

To investigate the protein expression of the novel splice form, indirect immunofluo-
rescence analysis (IFA) was performed as described previously [20]. Briefly, CECs were
infected with 100 pfu, fixed at 5 dpi with 4% paraformaldehyde, and blocked with 3%
BSA for 30 min. Subsequently, cells were stained with the mouse monoclonal α-FLAG
tag antibody (1:500; ABM; Richmond, Canada) and incubated for 45 min at room tem-
perature. Cells were washed with PBS, probed with Alexa goat anti-mouse IgG (H + L)
568 antibody (1:1000; Invitrogen; Carlsbad, CA, USA), and incubated at room temperature
for 45 min. After three washes with PBS, cells were stained with DAPI stain (5 µg/mL)
in PBS. Cells were examined and images captured with an AxioVision microscope (Zeiss;
Oberkochen, Germany).

2.6. Plaque Size Assays

To assess cell-to-cell spread of the recombinant viruses, we performed plaque size
assays as previously described [15,22]. Briefly, one million CECs were infected with 100 pfu
of the indicated viruses. At 5 dpi, images of randomly selected plaques (n = 50) were
captured and analyzed using the ImageJ software (NIH; Madison, WI, USA). Plaque
diameters were measured and compared with the controls.

2.7. Multi-Step Growth Kinetics

Replication properties of the recombinant viruses were assessed by quantitative PCR
(qPCR)-based multi-step growth kinetics as previously described [15,22]. Briefly, one
million CECs were infected with 100 pfu of the indicated viruses. Cells were harvested at
the indicated time points over the course of five days, and viral DNA was extracted using
the RTP DNA/RNA Virus Mini kit (Stratec; Berlin, Germany). MDV genome copies of
three independent experiments were evaluated by qPCR. Primers and probes specific to
the MDV-infected cell protein 4 (ICP4) and chicken inducible nitric oxide synthase (iNOS)
are listed in Table 1. Virus genome copies were normalized against the chicken iNOS gene.

2.8. In Vivo Experiment

To investigate the role of vIL-8-E3′ in MDV replication and pathogenesis in vivo,
one-day-old specific pathogen-free (SPF) VALO chickens (VALO BioMedia) were randomly
distributed into three groups and housed separately. The chickens of each group were
infected subcutaneously with 4000 pfu of either the wild type (n = 10), v∆E3′ (n = 25), or
vMetvIL-8 (n = 24). In addition, age-matched naïve chickens (WT (n = 11), v∆E3′ (n = 10),
and vMetvIL-8 (n = 10)) were co-housed with experimentally infected chickens to assess
the natural transmission of the respective viruses. The experiment was performed in a
blinded manner to eliminate any subjectivity. Chickens were monitored daily for the onset
of clinical symptoms. Once clinical signs were detected or at termination of the experiment
(at 91 dpi), chickens were humanely euthanized and examined for gross tumor lesions.
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2.9. Virus Quantification in Blood and Feather Follicles

To assess virus replication in vivo, whole blood samples were collected from infected
animals at 4, 7, 10, 14, 21, and 28 dpi (n = 8) as well as contact animals at 21, 28, and 35 dpi
(n = 8). DNA was isolated from all blood samples using the NucleoSpin 96 Blood Core Kit
(Macherey-Nagel; Düren, Germany) according to the manufacturer’s instructions. To eval-
uate the efficiency of the virus delivery to and replication in the feather follicle epithelium
(FFE), proximal ends of each feather containing the feather pulp were collected from in-
fected birds at 14, 21, 28, 35, and 42 dpi as described previously [19,23]. DNA was extracted
through treatment of the feather pulp with proteinase K at 55 ◦C overnight, followed
by phenol:chloroform:isoamyl alcohol extraction and ethanol precipitation as described
previously [24]. MDV genome copies were measured by qPCR as described above.

2.10. Statistical Analyses

Statistical analyses were performed using GraphPad Prism v8 (GraphPad Software,
Inc.; San Diego, CA, USA). The multi-step growth kinetics were analyzed with the Kruskal–
Wallis test. Analysis for plaque size assays was performed by a one-way analysis of
variance (ANOVA). Data on the number of MDV genome copies in whole blood and
feather samples were analyzed using the Kruskal–Wallis test. Disease incidence curves
were analyzed using the log-rank test (Mantel–Cox test); Fisher’s exact test was used for
tumor incidences and tumor distribution with corrections on multiple comparisons. Data
were considered significant if p ≤ 0.05.

3. Results
3.1. Detection of Protein Expression of the Novel vIL-8 Splice Variant

To determine whether the novel splice variant is expressed as a protein, we generated
a recombinant MDV (vE3′-FLAG) containing a FLAG tag in frame with the putative
protein. The FLAG tag was inserted within intron II downstream of the novel acceptor
splice site A19′ (Figure 1A). We infected CECs with E3′-FLAG or the parental virus and
investigated the expression of the putative protein. Western blot analysis revealed that the
8.8 kilo Daltons (kDa) protein was efficiently expressed and confirmed the existence of the
putative protein containing the novel exon 3 (E3′) of vIL-8. The size is consistent with the
protein encoded by the alternatively spliced vIL-8 transcripts fusing exons I, II, E3′ and the
FLAG tag.

To validate the expression of the novel vIL-8 splice variant on the cellular level, we
performed IFA. Expression of the FLAG-tagged protein was clearly detectable in vE3′-
FLAG-infected cells, while it was not detected in cells infected with the parental virus
(Figure 1C). Our data demonstrate that the E3′ exon indeed gives rise to an alternatively
spliced vIL-8 protein; however, it remained elusive whether this splice form plays a role in
MDV replication and pathogenesis.

3.2. Abrogation of the Novel vIL-8 Splice Variant

Previous studies demonstrated that individual splice variants can be abrogated by
mutating the splice acceptor sites without affecting other gene products of the respective
gene [25,26]. To determine the role of the novel vIL-8 splice variant, we replaced the
acceptor splice site (A19′) AG to AA to abrogate the expression of the novel isoform
(v∆E3′). To confirm that the vIL-8-E3′ protein is indeed not expressed, we also generated a
mutant virus (v∆E3′-FLAG) harboring the FLAG tag in the deletion mutant. IFA analysis
revealed that the expression of the novel splice variant was indeed abrogated in v∆E3′-
FLAG-infected cells (Figure 1C), while it was readily detectable with the mutant harboring
only the FLAG tag. Our data highlight that the novel acceptor splice site A19′ is crucial for
the expression of the novel vIL-8 splice variant.

Next, we assessed the role of the novel splice variant in viral replication and cell-to-cell
spread using multi-step growth kinetics and plaque size assays. Plaque size assays revealed
that abrogation of the novel splice variant did not significantly affect virus replication and
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spread in culture compared with the parental virus (Figure 2A). These data were confirmed
by multi-step growth kinetics that also did not reveal any significant differences (Figure 2B).
Furthermore, we analyzed whether secretion of the vIL-8 chemokine is affected due to
the abrogation of the novel splice variant. We infected CECs with the respective viruses
and harvested the supernatant. Western blot analyses revealed that the levels of the
vIL-8 protein in the supernatant were comparable between the v∆E3′ and parental virus
(Figure 2C), highlighting that vIL-8 secretion is not dependent on the novel splice variant.

Microorganisms 2021, 9, x FOR PEER REVIEW 7 of 13 
 

 

Figure 1. Identification and validation of the novel MDV vIL-8 splice variant containing E3′. (A) Schematic representation 
of the MDV genome (RB1B strain with deleted internal repeats, RB1B-ΔIRLS-HR) harboring the mini-F cassette with the 
pTK-eGFP cassette (green square), with a focus on the vIL-8 gene. The predicted splice acceptor site, potential exon, and 
stop codon are labeled with A19′, E3′, and stop, respectively. We inserted a FLAG tag (red square) at 89 bp downstream 
of the 5′ end of vIL-8 intron II (vE3′-FLAG). A point mutation (G to A) at the splice acceptor site was introduced to abrogate 
expression of the E3′splice variant (vΔE3′-FLAG and vΔE3′). (B) Western blot of the novel vIL-8 splice variant. CECs were 
infected with 10000 pfu and lysates harvested in RIPA I buffer. Lysates were subjected to SDS-PAGE and then 
immunoblotted with the mouse monoclonal α-FLAG tag antibody and a secondary anti-mouse IgM HRP-conjugated 
antibody. Cells infected with the parental virus RB1B-ΔIRLS-HR were used as a negative control. (C) Detection of the novel 
vIL-8 splice variant by IFA. CECs were infected with 100 pfu of the indicated viruses, fixed at 5 dpi, and stained with a 
mouse monoclonal α-FLAG tag antibody (Alexa 568). Virus-infected cells express eGFP (green), and nuclei were 
visualized using DAPI (blue). The scale bars correspond to 100 µm. 

3.2. Abrogation of the Novel vIL-8 Splice Variant 
Previous studies demonstrated that individual splice variants can be abrogated by 

mutating the splice acceptor sites without affecting other gene products of the respective 
gene [25,26]. To determine the role of the novel vIL-8 splice variant, we replaced the 
acceptor splice site (A19′) AG to AA to abrogate the expression of the novel isoform 
(vΔE3′). To confirm that the vIL-8-E3′ protein is indeed not expressed, we also generated 
a mutant virus (vΔE3′-FLAG) harboring the FLAG tag in the deletion mutant. IFA analysis 
revealed that the expression of the novel splice variant was indeed abrogated in vΔE3′-
FLAG-infected cells (Figure 1C), while it was readily detectable with the mutant harboring 
only the FLAG tag. Our data highlight that the novel acceptor splice site A19′ is crucial for 
the expression of the novel vIL-8 splice variant. 

Next, we assessed the role of the novel splice variant in viral replication and cell-to-
cell spread using multi-step growth kinetics and plaque size assays. Plaque size assays 
revealed that abrogation of the novel splice variant did not significantly affect virus 
replication and spread in culture compared with the parental virus (Figure 2A). These 
data were confirmed by multi-step growth kinetics that also did not reveal any significant 
differences (Figure 2B). Furthermore, we analyzed whether secretion of the vIL-8 
chemokine is affected due to the abrogation of the novel splice variant. We infected CECs 
with the respective viruses and harvested the supernatant. Western blot analyses revealed 
that the levels of the vIL-8 protein in the supernatant were comparable between the vΔE3′ 
and parental virus (Figure 2C), highlighting that vIL-8 secretion is not dependent on the 
novel splice variant. 

 
Figure 2. Characterization of vΔE3′ lacking the novel vIL-8 splice variant. (A) Plaque size assays of recombinant virus. 
Mean plaque diameters are shown as box plots with 5% to 95% confidence intervals (n = 50; p > 0.05, one-way ANOVA). 
(B) Viral replication was assessed by qPCR-based multi-step growth kinetics. Mean viral genome copies per one million 
cells with standard deviations are shown for the indicated viruses and different time points post infection (p > 0.05, 
Kruskal–Wallis test, n = 3). (C) Assessment of vIL-8 secretion by Western blotting. The supernatants of cells infected with 

Figure 2. Characterization of v∆E3′ lacking the novel vIL-8 splice variant. (A) Plaque size assays of recombinant virus. Mean
plaque diameters are shown as box plots with 5% to 95% confidence intervals (n = 50; p > 0.05, one-way ANOVA). (B) Viral
replication was assessed by qPCR-based multi-step growth kinetics. Mean viral genome copies per one million cells with
standard deviations are shown for the indicated viruses and different time points post infection (p > 0.05, Kruskal–Wallis
test, n = 3). (C) Assessment of vIL-8 secretion by Western blotting. The supernatants of cells infected with the parental virus
and v∆E3′ were harvested and membranes were incubated with vIL-8 and gC antibodies, respectively. The secreted MDV
gC was used as a control for viral secretion products.

3.3. Role of the Novel vIL-8 Splice Variant in MDV Pathogenesis and Tumorigenesis

To investigate whether the novel vIL-8 splice variant contributes to MDV replication,
pathogenesis, and tumor formation, we infected one-day-old chickens subcutaneously with
4000 pfu of v∆E3′, v∆MetvIL-8, or wild type (WT) virus. The v∆MetvIL-8 mutant served as
a reference as it lacks expression of the secreted vIL-8 chemokine, resulting in significantly
reduced disease and tumor incidence, but allows splicing of all vIL-8 variants as published
previously [9]. First, we determined whether abrogation of the novel vIL-8 splice variant
affects MDV replication in vivo. We quantified viral genome copies in the blood of infected
chickens by qPCR at various time points post infection. v∆E3′ replicated efficiently in
infected chickens (Figure 3A), indicating that the novel splice variant is dispensable for
lytic replication in vivo. Moreover, we measured the virus load in FFE of the infected
animals and observed high viral levels of v∆E3′ that were comparable to WT, suggesting
that the novel splice variant does not contribute to the transport to and replication in the
skin (Figure 3B). In contrast, virus load in the blood and the skin was significantly reduced
in v∆MetvIL-8-infected animals in the absence of vIL-8 secretion (Figure 3A,B), which is
consistent with a previous study [9].

In addition, we monitored the chickens for clinical disease symptoms and tumor
incidence over the course of the 91-day experiment. Only 33.3% of the v∆MetvIL-8-infected
chickens developed MD and tumors (Figure 3C–E), which is consistent with previous
findings [9]. However, v∆E3′ induced disease and tumor induction as efficiently as in WT
infections (Figure 3C–E), suggesting that the novel splice variant does not contribute to
MDV pathogenesis. Taken together, our data demonstrate that the absence of the novel
vIL-8 splice variant does not affect MDV replication, pathogenesis, tumor formation, and
dissemination upon experimental infection.
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Figure 3. Experimental infection of chickens with v∆E3′ lacking the novel vIL-8 splice variant. (A) MDV genome copies
were measured in whole blood samples of chickens infected with the indicated viruses by qPCR. Mean MDV genome
copies per one million cells with standard deviations are shown for the indicated time points (p > 0.05, Kruskal–Wallis
test). (B) MDV genome copies of the indicated viruses in feather tips of infected chickens (p > 0.05, Kruskal–Wallis test).
(C) Disease incidences in chickens infected with the indicated recombinant viruses. Asterisks indicate significant differences
in comparison with WT (*** p < 0.001, log-rank (Mantel–Cox) test). (D) Tumor incidence as the percentage of animals that
developed tumors during the experiment. Asterisks indicate significant differences compared with WT (** p < 0.01; Fisher’s
exact test). (E) Tumor distribution is shown as the number of tumorous organs in tumor-bearing animals with standard
deviations (p > 0.05; Fisher’s exact test).

Previous studies showed that vIL-8 is essential for MDV pathogenesis and tumor
formation in animals infected via the natural route of infection. To determine whether
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the novel vIL-8 splice variant plays a role in these processes during the natural infection,
we co-housed naïve chickens with the subcutaneously infected chickens. v∆E3′ was
efficiently transmitted to the contact chickens and replicated comparably to the parental
virus (Figure 4A), suggesting that the establishment of MDV infection was not altered in the
absence of the novel vIL-8 splice variant. We also monitored disease and tumor incidence
during the entire experiment. None of the v∆MetvIL-8-contact chickens developed disease,
while v∆E3′ viruses caused disease as efficiently as the parental virus (Figure 4B). Similarly,
the tumor incidence (Figure 4C) and distribution (Figure 4D) of the v∆E3′ group were
not significantly different from the group that was infected with WT. Taken together, our
data demonstrate that the novel vIL-8 splice variant is not essential for Marek’s disease
establishment in naturally infected contact animals.
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the indicated time points (p > 0.05, Kruskal–Wallis test). (B) Disease incidence in naïve chickens infected with the indicated
recombinant viruses (p > 0.05, log-rank (Mantel–Cox) test). (C,D) Tumor incidence and tumor distribution with standard
deviations are shown for co-housed naïve chickens (p > 0.05, Fisher’s exact test).

4. Discussion

Herpesviruses have large and complex genomes and encode for many viral proteins.
Over the last few years, next-generation sequencing analyses have revealed a wealth of
novel herpesvirus genes and splice products [27–29]. Thus, the complexity of herpesvirus
gene expression is further increased by the fact that a substantial number of viral proteins
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are encoded from spliced transcripts and/or alternative splicing. Several spliced viral
transcripts have been described for MDV in vivo and in vitro, e.g., for the meq, vIL-8, and
gC genes [12,13,30,31]. Recent studies have indicated that a spliced transcript of vIL-8 and
meq play a role in MDV pathogenesis [32]. Consequently, there is an immense need to
better understand the role of splicing in the MDV lifecycle and in MDV pathogenesis.

So far, various vIL-8 splice variants have been identified, but it remained unknown
whether each of the splice variants encodes a functional protein [12]. Recent compre-
hensive MDV transcriptome analyses identified a novel vIL-8 splice junction, which was
detected at about 13–40-fold lower levels compared with previously published vIL-8
transcripts [6,12,13]. This new splice site was predicted to lead to a novel ORF that could
potentially also splice with other transcripts through its splice acceptor site. In this study,
we set out to validate the protein expression of the novel vIL-8 isoform using FLAG-tagged
mutants. By Western blot analysis, we confirmed the existence of the novel splice vari-
ant containing exon E3′. A previous study reported an alternatively spliced Meq/vIL-8
transcript, which contains the bZIP amino terminus of Meq spliced with exon 2 and this
short novel exon [33]. Intriguingly, this splice form was not detected at the protein level by
Western blotting in infected CECs.

Spliced gene products can regulate protein levels or activities [25,34]. In MDV research,
a recent study showed that the lack of Meq/vIL-8 splicing enhances virus replication during
the late phase in infected chickens [32]. Therefore, we first investigated the novel E3′ splice
variant in the context of virus replication and protein secretion. By mutating the A19′

splice acceptor site, we could demonstrate that neither MDV replication nor vIL-8 secretion
was altered (Figure 2), which is consistent with previous findings demonstrating that a
complete vIL-8 deletion or an abrogation of vIL-8 secretion did not affect virus replication
in vitro [9,12]. Furthermore, abrogation of the novel vIL-8 splice variants did not affect
virus replication during the early or late phase of infection in vivo (Figures 3A and 4A).
In light of these data, we concluded that the novel vIL-8 splice variant is dispensable for
viral replication.

Complete deletion of vIL-8 severely impaired tumor incidence by more than 90% [8,11],
while abrogation of the secreted chemokine without affecting the other splice variants
still caused disease and tumors in about one third of the experimentally infected chickens
(Figure 3C,D) [9]. Thus, the vIL-8 splice variants could potentially play roles in MDV-
induced disease and tumor formation. Moreover, virus-encoded splice variants in general
have been found to inhibit tumor suppressors, evade an immune response, and promote
tumorigenesis [35,36]. To assess the effect of the novel splice variant on MDV pathogenesis,
we infected one-day-old chickens with a virus that does not express the new vIL-8 splice
variant. The recombinant virus (v∆E3′) showed disease and tumor incidences comparable
to the WT virus (Figure 3C–E), suggesting that the novel vIL-8 splice variant is not essential
for MDV pathogenesis and tumorigenesis.

Efficient horizontal transmission of MDV requires vIL8 secretion [9]. Similarly, pre-
vious studies revealed that all three gC splice variants are important for virus transmis-
sion [31]. Thus, we assessed the ability of these novel vIL-8 splice variants to spread to naïve
co-housed contact chickens. We found that the v∆E3′ mutant was readily transmitted to
contact chickens (Figure 4A) and observed comparable disease and tumor incidence to that
in contact chickens infected with the WT via the natural route (Figure 4B–D), demonstrating
that the novel vIL-8 splice variant is dispensable for transmission of MDV.

Interestingly, splicing of herpesviral genes is regulated by viral factors, such as the
infected-cell protein 27 (ICP27) [37,38]. HSV-1 ICP27 predominantly transactivated un-
spliced gC mRNA and promoted the retention of an intron [39,40]. As described for HSV-1,
MDV ICP27 can interact with splicing factors, which inhibits mRNA splicing of vIL-8
and the cellular chicken telomerase reverse transcriptase (chTERT) [41]. Upon ICP27 ex-
pression, unspliced vIL-8 transcripts were at low levels during MDV reactivation [41].
Thus, it would be very intriguing to further explore why MDV blocks vIL-8 splice variants
during reactivation.
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In summary, we investigated the role of a novel vIL-8 splice variant and could demon-
strate that it is expressed as a protein but does not alter viral replication and disease
outcomes. Although the novel vIL-8 splice variant is dispensable for MDV pathogenesis
and tumorigenesis, our data provide a foundation for future studies on the diverse set of
vIL-8 splice variants in the MDV lifecycle.
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